[单选题]

已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1=(1,2,0)T,α2=(1,0,1)T,向量β=(-1,2,-2)T,则Aβ等于()。

A . (2,2,1)T

B . (-1,2,_2)T

C . (-2,4,-4)T

D . (-2,-4,4)

参考答案与解析:

相关试题

已知二阶实对称矩阵A的特征值是1,A的对应于特征值1的特征向量为(1,-1)T,若|A|=-1,则A的另一个特征值及其对应的特征向量是(  )。

[单选题]已知二阶实对称矩阵A的特征值是1,A的对应于特征值1的特征向量为(1,-1)T,若|A|=-1,则A的另一个特征值及其对应的特征向量是(  )。A.B

  • 查看答案
  • 设λ1,λ2是矩阵A的2个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量

    [单选题]设λ1,λ2是矩阵A的2个不同的特征值,ξ,η是A的分别属于λ1,λ2的特征向量,则以下选项中正确的是:()A . 对任意的k1≠0和k2≠0,k1ξ+k2η,都是A的特征向量B . 存在常数k1≠0和k2≠0,使得k1ξ+k2η,是A的特征向量C . 存在任意的k1≠0和k2≠0,k1ξ+k2η,都不是A的特征向量D . 仅当k1=k2=0时,k1ξ+k2η,是A的特征向量

  • 查看答案
  • 设λ1,λ2是矩阵A的两个不同的特征值,ξ、η是a的分别属于λ1、λ2的特征向量

    [单选题]设λ1,λ2是矩阵A的两个不同的特征值,ξ、η是a的分别属于λ1、λ2的特征向量,则以下选项正确的是()。A . 对任意的k1≠0和k2≠0,k1ξ+k2η都是A的特征向量B . 存在常数k1≠0和k2≠0,使得k1ξ+k2η是A的特征向量C . 对任意的k1≠0和k2≠0,k1ξ+k2η都不是A的特征向量D . 仅当k1=k2=0时,k1ξ+k2η是A的特征向量

  • 查看答案
  • (1)若α1,α2,…,αr是A的属于特征值λ的特征向量,则α1,α2,…,αr的任一个非零线性组合也是A的属于λ的特征向量.<br />(2)矩阵可逆的充分必要条件是它的特征值都不为0.

    [问答题](1)若α1,α2,…,αr是A的属于特征值λ的特征向量,则α1,α2,…,αr的任一个非零线性组合也是A的属于λ的特征向量.(2)矩阵可逆的充分必要

  • 查看答案
  • (1)若α1,α2,…,αr是A的属于特征值λ的特征向量,则α1,α2,…,αr的任一个非零线性组合也是A的属于λ的特征向量.<br />(2)矩阵可逆的充分必要条件是它的特征值都不为0.

    [问答题](1)若α1,α2,…,αr是A的属于特征值λ的特征向量,则α1,α2,…,αr的任一个非零线性组合也是A的属于λ的特征向量.(2)矩阵可逆的充分必要

  • 查看答案
  • (1)若α1,α2,…,αr是A的属于特征值λ的特征向量,则α1,α2,…,αr的任一个非零线性组合也是A的属于λ的特征向量.<br />(2)矩阵可逆的充分必要条件是它的特征值都不为0.

    [问答题](1)若α1,α2,…,αr是A的属于特征值λ的特征向量,则α1,α2,…,αr的任一个非零线性组合也是A的属于λ的特征向量.(2)矩阵可逆的充分必要

  • 查看答案
  • 设三阶矩阵A的特征值是1,2,2,E为三阶单位矩阵,则|4A-1-E|=____________。

    [问答题]设三阶矩阵A的特征值是1,2,2,E为三阶单位矩阵,则|4A-1-E|=____________。

  • 查看答案
  • 二阶矩阵A有两个不同的特征值,α1,α2是A的线性无关的特征向量,且满足A2(α1+α2)=α1+α2,则|A|=----------。

    [问答题]二阶矩阵A有两个不同的特征值,α1,α2是A的线性无关的特征向量,且满足A2(α1+α2)=α1+α2,则|A|=----------。

  • 查看答案
  • 已知是对称矩阵A的三个特征值为λ1=2,λ2=λ3=4,且对应于λ2,λ3的特征向量为ξ2=(1,1,-1)T,ξ3=(2,3,-3)T.<br />(1)求A的属于特征值λ1=2的特征向

    [问答题]已知是对称矩阵A的三个特征值为λ1=2,λ2=λ3=4,且对应于λ2,λ3的特征向量为ξ2=(1,1,-1)T,ξ3=(2,3,-3)T.(1)求A的

  • 查看答案
  • 已知是对称矩阵A的三个特征值为λ1=2,λ2=λ3=4,且对应于λ2,λ3的特征向量为ξ2=(1,1,-1)T,ξ3=(2,3,-3)T.<br />(1)求A的属于特征值λ1=2的特征向

    [问答题]已知是对称矩阵A的三个特征值为λ1=2,λ2=λ3=4,且对应于λ2,λ3的特征向量为ξ2=(1,1,-1)T,ξ3=(2,3,-3)T.(1)求A的

  • 查看答案
  • 已知λ=2是三阶矩阵A的一个特征值,α1,α2是A的属于λ=2的特征向量。若α1